Single-Polymer Dynamics in Steady Shear Flow
نویسندگان
چکیده
منابع مشابه
Single-polymer dynamics in steady shear flow.
The conformational dynamics of individual, flexible polymers in steady shear flow were directly observed by the use of video fluorescence microscopy. The probability distribution for the molecular extension was determined as a function of shear rate, gamma;, for two different polymer relaxation times, tau. In contrast to the behavior in pure elongational flow, the average polymer extension in s...
متن کاملSingle-chain dynamics in a semidilute polymer solution under steady shear.
We use Brownian dynamics computer simulations to investigate single-chain dynamics in a semidilute polymer solution undergoing a steady, uniform shear flow. In the presence of the shear flow, the system used in the present study exhibits anisotropic structure factors, often referred to as butterfly patterns, which rotate with increasing shear rate [P. P. Jose and G. Szamel, J. Chem. Phys. 127, ...
متن کاملSingle polymer dynamics in an elongational flow.
The stretching of individual polymers in a spatially homogeneous velocity gradient was observed through use of fluorescently labeled DNA molecules. The probability distribution of molecular extension was determined as a function of time and strain rate. Although some molecules reached steady state, the average extension did not, even after a approximately 300-fold distortion of the underlying f...
متن کاملDynamics of a tethered polymer in shear flow.
The dynamics of a single polymer tethered to a solid surface in a shear flow was observed using fluorescently labeled DNA chains. Dramatic shear enhanced temporal fluctuations in the chain extension were observed. The rate of these fluctuations initially decreased for increasing shear rate gamma; and increased above a critical gamma;. Simulations revealed that these anomalous dynamics arise fro...
متن کاملDynamics of a semiflexible polymer or polymer ring in shear flow.
Polymers exposed to shear flow exhibit a remarkably rich tumbling dynamics. While rigid rods rotate on Jeffery orbits, a flexible polymer stretches and coils up during tumbling. Theoretical results show that in both of these asymptotic regimes the corresponding tumbling frequency f(c) in a linear shear flow of strength γ scales as a power law Wi(2/3) in the Weissenberg number Wi = γτ, where τ i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 1999
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.283.5408.1724